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Exact result on topology and phase transitions at any finiteN
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We study analytically the topology of a family of submanifolds of the configuration space of the mean-field
XY model, computing also a topological invariant~the Euler characteristic!. We prove that a particular topo-
logical change of these submanifolds is connected to the phase transition of this system, and exists also at finite
N. The present result is the firstanalytic proof that a phase transition has a topological origin and provides a
key to a possible better understanding of the origin of phase transitions at their deepest level, as well as to a
possible definition of phase transitions at finiteN.
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Phase transitions~PTs! are one of the most striking phe
nomena in nature. They involve sudden qualitative phys
changes, accompanied by sudden changes in the therm
namic quantities measured in experiments. From a m
ematical point of view, both qualitative and quantitati
changes at PTs are conventionally described by the los
analyticity of the probability measures and of the thermo
namic functions. According to statistical mechanics, suc
nonanalytic behavior can exist only in the thermodynam
limit, i.e., in the case of a system withN→` degrees of
freedom @1#. PTs in real systems would then be th
‘‘shadow,’’ at finite but largeN, of this idealized behavior
However, the necessity of taking theN→` limit to speak of
PTs seems less satisfactory today, since there is growing
perimental evidence of PT phenomena in systems withsmall
N ~e.g., atomic clusters, nuclei, and mesoscopic system
general@2#!.

There is also another reason why the conventional
proach to PTs is not yet completely satisfactory. Conside
classical system described by a HamiltonianH5K(p)
1V(w), where K(p)51/2(N

i 51p i
2 is the kinetic energy,

V(w) is the potential energy andw[$w i% andp[$p i% ’s are,
respectively, the canonical conjugate coordinates and
menta. Although, in principle, all the information on the st
tistical properties is contained in the functionV(w), no gen-
eral result is available to specify which features ofV(w) are
necessary and sufficient to entail the existence of a PT. T
is the more surprising since in many cases, knowinga priori
that a system undergoes a PT, several relevant propertie
the PT can be predicted just in terms of very general featu
of V(w) ~e.g., by means of renormalization-group tec
niques!.

An alternative approach to PTs has been recently p
posed@3–8#, which connects the existence of a PT to t
properties of the potential energyV(w), resorting totopo-
logical concepts. According to this topological hypothes
PTs would be related totopology changes~TCs! of the sub-
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manifoldsMV of configuration space, defined by the pote
tial energyV(w) as: MV5ME2K , i.e., the subsets of the
configuration spaceM contained within the equipotential hy
persurface of levelV5E2K, whereE is the total energy. In
other words, the existence of a PT would be written in t
potential energy function as the existence of a peculiar TC
the manifoldsMV . Abrupt TCs of these manifolds can yiel
singular derivatives in the microcanonical volumeV(E)
@9,10#; if this behavior is persistent with increasingN, such a
TC will result in a loss of analyticity of the thermodynam
observables, only in theN→` limit @11#.

The topological approach to phase transitions seems
very promising in the light of a possible solution to the tw
above-mentioned problems with the conventional appro
to PTs, because not only does it link the existence of a
with the analytical properties of the potential energy functi
V(w) encoding the topology of theMV , independently of
the statistical probability measures, but it also provides
natural way to extend the concept of a PT to finiteN. In the
topological approach, the loss of analyticity of the therm
dynamic observables in theN→` limit is due to a deeper
primitive topological cause of a PT, which is already pres
at finite N.

The topological approach has been put forward on a h
ristic basis in Ref.@3#: since then, by means of numerical an
analytical investigations on particular models, evidence
accumulated in favor of its validity, but this evidence is st
circumstantial. For the latticew4 model, indirect@4# as well
as direct@6# evidence has been found, but only numerica
In Ref. @5#, an analytical argument which strongly suppo
the validity of the topological approach in the case of t
mean-fieldXY model has been given, however, it does n
rigorously prove the existence of a TC which is connected
a PT. Moreover, these studies have shown thatnot all pos-
sible TCs are related to PTs@8#, and no general argument i
yet at hand to define thesufficientconditions under which a
TC is actually related to a PT. Analytical, as well as nume
cal results@4–6#, give no direct hint to the solution of this
problem, suggesting only that a TC related to a PT should
a ‘‘second-order’’ one, i.e., not a mere change in the topolo
but also a ‘‘change in the way of changing’’ the topolog
Confirmation or confutation of this idea, as well as furth
©2002 The American Physical Society12-1
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insight into the nature of the TCs related to PTs should
provided by analytical calculations of topological invarian
of the manifoldsMV .

In the present paper, we prove on a firm mathemat
basis the existence of a TC which is connected with the
of the mean-fieldXY model. Moreover, we give a complet
analytical characterization of all the TCs in the configurat
space, which clearly indicates the difference between the
related to the PT and other TCs. We are also able to com
analytically a topological invariant of theMV , the Euler
characteristicx, showing that the TC connected to the P
corresponds here to a sharp discontinuous jump inx. Inci-
dentally this confirms that the TC related to the PT
‘‘second-order’’ because also the derivative ofx shows a
sharp change.

Although still limited to a particular model, the prese
result is the first analytical confirmation of the validity of th
topological approach, which then can be put on a firm ba
Moreover, the technique here used to study analytically
TCs and to computex is completely general and could hop
fully be applied also to other systems. To the best of
knowledge, this is also the first analytical calculation of t
Euler characteristic forN-dimensional configuration space
of physical models.

Let us now summarize a few needed facts about topol
before discussing the case of our model. The TCs we
referring to are those transformations which map a manif
onto one which is not diffeomorphic to the previous one, i
which cannot be mapped back to it by means of a differ
tiable transformation. A TC is therefore any transformati
which ‘‘breaks the fabric’’ of a manifold: making a hole—
without boundary—in a sphere transforms it into a torus, a
there is no smooth way to transform a torus back to a sph
Morse theory@12# provides a way of classifying TCs o
manifolds, and linksglobal topological properties withlocal
analytical properties of smooth functions defined on them
that they can be used as a practical tool to study their to
ogy. Given a~compact! N-dimensional manifoldM and a
smooth functionf: M°R, a point x̄PM is called acritical
point of f if d f50, i.e., if the differential off at x vanishes,
while the valuef ( x̄) is called acritical value. A level set
f 21(a)5$xPM : f (x)5a% of f is called acritical level if a is
a critical value off, i.e., if there is at least one critical poin
x̄P f 21(a). The functionf is called aMorse function on Mif
its critical points are all nondegenerate, i.e., if the Hessian
f at x̄ has only nonzero eigenvalues, so that the critical po
x̄ are isolated. We now consider the configuration space
classical system as our manifoldM, and the potential energ
per particleV(w)5V(w)/N as our Morse function. Then, th
submanifoldsM v of M whose topology we want to invest
gate are

M v5V21~2`,v#5$wPM :V~w!<v%, ~1!

i.e., the same as theMV5ME2K defined above~where in
M v , V has been rescaled by 1/N, i.e., v5V/N, in order to
make the comparison of systems with differentN easier!. All
the submanifoldsM v of M, with increasingv, have the same
topology until a critical levelV21( v̄) is crossed. Here, the
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topology ofM v changes in a way completely determined
the local properties of the Morse function: at any critic
level ak-handleH (k) is attached@13#, wherek is theindexof
the critical point, i.e., the number of negative eigenvalues
the Hessian matrix ofV at this point. Notice that if there are
m.1 critical points on the same critical level, with indice
k1 ,...,km , then the TC is made by attachingm disjoint
handlesH (k1),...,H (km). This way, by increasingv, the full
configuration spaceM can be constructed sequentially fro
theM v . Knowing the index of all the critical points below
given levelv, we can obtainexactlythe Euler characteristic
of the manifoldsM v , given by

x~M v!5 (
k50

N

~21!kmk~M v!, ~2!

where theMorse numbermk is the number of critical points
of V which have indexk @15#. The Euler characteristicx is a
topological invariant: any change inx(M v) implies a TC in
the M v .

Thus, in order to detect and characterize topologi
changes inM v , we have to find the critical points and th
critical values ofV, which means solving the equations

]V~w!

]w i
50, i 51,...,N, ~3!

and to compute the indices ofall the critical points ofV, i.e.,
the number of negative eigenvalues of its Hessian

Hi j 5
]2V

]w i]w j
i , j 51,...,N. ~4!

In the case of the mean-fieldXY model, which describes a
system ofN equally coupled planar classical rotators@14#,
due to the mean-field character of the interactions, suc
calculation can be done in a completely analytical way. T
allows then a discussion of the relationship between TCs
the PT of this model, whose potential energy is

V~w!5
J

2N (
i , j 51

N

@12cos~w i2w j !#2h(
i 51

N

cosw i , ~5!

wherew iP@0,2p# is the rotation angle of thei th rotator and
h is an external field. The model describes also a planar~XY!
Heisenberg system with interactions of equal strength am
all the classical spinssi5(coswi ,sinwi). We consider only
the ferromagnetic caseJ.0; for the sake of simplicity, we
setJ51. In the limit h→0, the system has a continuous P
with classical critical exponents, atTc51/2, or «c53/4,
where«5E/N is the total energy per particle@14#. Defining
the magnetization vector per particlem5(mx ,my), where
mx51/NSN

i 51 coswi , my51/NSN
i 51 sinwi , the potential

energyV can be written as a function ofm as

V~w!5V~mx ,my!5 N
2 ~12mx

22my
2!2hNmx . ~6!

The range of values of the potential energy per particleV
5V/N, is then2h<V<1/21h2/2.
2-2
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The configuration spaceM of the model is an
N-dimensional torus, being parameterized by theN angles
$w i%5w1 ,...,wN . We now study the topology of the famil
of submanifoldsM v for this model. First, since TCs ofM v
can occur only at critical points ofV, there are no TCs when
v.1/21h2/2, i.e., all theM v’s with v.1/21h2/2 must be
diffeomorphic to the wholeM, that is, they must beN tori.
Then one has to find all the solutions of Eqs.~3!, which can
be rewritten in the form@5,8#

~mx1h!sinw i2my cosw i50, i 51,...,N. ~7!

As long as (mx1h)Þ0 andmyÞ0 ~mx andmy are both zero
only on the levelv51/21h2/2!, the solutions of Eqs.~7! are
all those configurations for which the anglesw i are either 0
or p. These configurations correspond to a value ofv which
depends only on the number of anglesnp which are equal to
p, and using Eq.~6! one obtains

v~np!5
1

2 F12
1

N2 ~N22np!2G2
h

N
~N22np!, ~8!

where 0<np<N. We have thus shown that asv changes
from its minimum2h ~corresponding tonp50! to 1/2 ~cor-
responding tonp5N/2! the manifoldsM v undergo a se-
quence of topology changes at theN critical valuesv(np)
given by Eq.~8!. There might be a TC also at the last~maxi-
mum! critical valuevc51/21h2/2. However, the above ar
gument does not prove it, since the critical points ofV cor-
responding to this critical level may be degenerate@16#, so
that on this level,V would not be a proper Morse function
Then, a critical valuevc is still a necessary condition for th
existence of a TC, but it is no longer sufficient. However,
argued in Refs.@5,8#, it is just this TC atvc which should be
related to the thermodynamic PT of the mean-fieldXY
model. For the temperatureT, the energy per particle« and
the average potential energy per particleu5^V& obey, in the
thermodynamic limit, the equation 2«5T12u(T), where
we have set Boltzmann’s constant equal to one. Substitu
in this equation the values of the critical energy per parti
and of the critical temperature, we getuc5u(Tc)51/2; as
h→0, vc→1/2, so thatvc5uc . Thus, a TC inM occurring at
this vc , wherevc is independentof N, is connected with the
PT in the limit N→`, and h→0, when indeed thermody
namic PTs are usually defined.

Let us now prove that a TC atvc actually exists and try to
understand why it is different from the other TCs, i.e., tho
occurring at 0<v,vc . To do that, we characterize all th
TCs occurring at the critical values 0<v,vc using Morse
theory, computing theindicesof the critical points ofV. At
these points, where the angles are either 0 orp, we can write
the Hessian matrix~4! in the formNH5D1B, whereD is
diagonal,D5diag(di), with d i5(mx1h)coswi , and the ele-
ments ofB, bi j , can be written in terms of a vectors whose
N elements are either 1 or21: bi j 521/Ns is j , with s i5
11 (resp.21) if w i50 ~resp.p!. The matrixB has only one
nonzero eigenvalue. This implies that the number of nega
eigenvalues ofH equals the number of negative eigenvalu
of D61 @17#, so that asN gets large, we can convenient
03611
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approximate the index of the critical point with the numb
of negatived’s at x. At a given critical point, with givennp ,
the eigenvalues ofD are

d i5mx1h i51,...,N2np ; ~9a!

d i52~mx1h! i 5N2np11,...,N, ~9b!

where thex component of the magnetization vector ismx
5122np /N, so thatmx.0 (resp.,0) if np<N/2 (resp.
.N/2). Then, if the external fieldh is sufficiently small, and
denoting by index (np) the index of a critical point with
given np , we can write

index~np!5np if np<
N

2
, ~10a!

index~np!5N2np if np.
N

2
. ~10b!

The numberC(np) of critical points having a givennp ,
which is the number of distinct strings of 0’s andp’s of
lengthN havingnp occurrences ofp, is given by the bino-
mial coefficient C(np)5(np

N ). Thus, at any critical level

2h<v(np)<1/2, wherev(np) is given by Eq.~8!, a topo-
logical change inM v occurs, which is made up of attachin
C(np) k handles, wherek(np)5 index (np) given in Eq.
~10!. Here,np as a function ofv can be obtained by solving
Eq. ~8!, yielding

np
~1 !~v !5 int.H N

2 F11h6Ah222S v2
1

2D G J , ~11!

where int.$a% stands for the integer part ofa. Equations~10!
and ~11! allow us to write the Morse numbersmk of the
manifoldsM v , for 2h<v,1/21h2/2, as

mk~v !5$12U@k2np
~2 !~v !#1U@N2k2np

~1 !~v !#%

3S N
k D , k50,1,...,N, ~12!

where U(x) is the Heaviside theta function. We note th
since 0<np

(2)<N/2 andN/211<np
(1)<N, Eq. ~12! implies

mk(v)50 ;k.N/2, i.e.,no critical points with index larger
than N/2 exist as long asv,1/21h2/2. On the other hand
for v.1/21h2/2, M v must be anN-torus TN, and for any
Morse function on such a manifold, one has@18# mk(T

N)
>(k

N) for k50,1,...,N. Thus, as 1/2<v,1/21h2/2, the
manifold is only ‘‘half’’ an N torus, and since we know tha
for v.1/21h2/2, M v is an N torus, we conclude that atv
5vc51/21h2/2, a TC must occur, which involves the at-
taching of (k

N) k handles for eachk ranging fromN/211 to
N. This is surely a ‘‘big’’ TC: all of a sudden, ‘‘half’’ anN
torus becomes a fullN torus. Now we can use Eqs.~2!, ~11!,
and~12! to compute the numerical values of the Euler ch
acteristic of the manifoldsM v as a function ofv: it turns out
that x jumps from positive to negative values, so that it
easier to look atuxu. In Figure 1, log(uxu(Mv))/N is plotted as
2-3
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a function ofv for various values ofN ranging from 50–800.
The ‘‘big’’ TC occurring at the maximum valuevc of V,
which corresponds in the thermodynamic limit to the P
implies a discontinuity ofuxu, jumping from a big value
@O(eN) in our case# to zero, which is the value ofx for anN
torus.

The analytical results we have presented provide ana
cal proof of the soundness of the topological approach to

FIG. 1. Plot of log(uxu(Mv))/N as a function ofv for h50.01 and
increasingN550, 200, 800~from bottom to top!.
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as well as a possible hint about what could be thesufficient
conditions for a TC in configuration space to yield a PT. F
in the model studied here, theN TCs which are not related to
the PT involve the simultaneous attachment of handles wh
are all of thesametype, while that occurring atvc is the
simultaneous attaching of handles ofO(N) different types.
Hence, we mightconjecturethat this is a sufficient condition
for a TC to be in one-to-one correspondence with a therm
dynamical PT, also in other models. The model studied h
has nonphysical long-range interactions. However, sinc
cuspy pattern of the Euler characteristic—of the equipot
tial hypersufaces—was numerically found at the PT po
also in the 2d-lattice w4 model with nearest-neighbor inte
actions@6#, we surmise that the results of the present pa
may be of general validity; moreover, being analytic, th
may provide the basis for a theory of the origin of PTs ba
on the topology of configuration space as encoded in
potential energy. The topological approach might also pr
useful in dealing with some aspects of disordered syst
such as glasses. In fact, for glass-forming liquids, topolog
concepts have been recently invoked@19#.
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